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Abstract. In this paper, we use Taylor, Chebychev and Legendre polynomials as a basis polynomials to obtain

numerical solution of the variable order integro-differential equations (VOIDEs). With the help the basis poly-

nomials and collocation method, the VOIDEs are reduced to a system of algebraic equations. Then, we solve

the system and obtain the approximate solution. Two examples are given to verify the efficiency of the proposed

method.
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1 Introduction

Fractional order differential equations are successfully applied in physics and engineering such
as earthquake analysis, bio-chemical, electric circuits, controller design, signal processing, vis-
coelasticity and so on Atanackovic et al. (2014); Chen et al. (2015); Podlubny (1999).

It is well know that obtaining of exact solution for most fractional ordinary/ partial/ integro-
differential equations are difficult or even impossible. So numerical or even approximation
schemes must be used. In last decades, some researches have proposed several approximation
and numerical methods. For example, Legendre, Bernstein, Bernoulli and Chebyshev poly-
nomials Heydari et al. (2014, 2017); Mohammadi & Hosseini (2011); Atanackovic et al. (2014);
Yousefi & Behroozifar (2010); Rahimkhani et al. (2017); Bhrawy et al. (2013); Zhu & Fan (2012),
Adomian decomposition method, He’s variational iteration, homotopy perturbation transform
methods Jafari & Daftardar-Gejji (2006); Jafari et al. (2013 a,b), sinh-Gordon equation expan-
sion method (ShGEEM) Sulaiman et al. (2018), the cancer treatment model Ali Dokuyucu et al.
(2018) and so on.

Recently, the concept of variable order calculus is taken into consideration. The Variable
order derivative is proposed by Samko Samko & Ross (1993) in 1993. Several techniques pro-
posed for handling numerical calculation of both variable order ordinary and integro-differential
equations Chen et al. (2015); Jia et al. (2017); Liu et al. (2016); Lorenzo & Hartley (2002);
Xu & Suat Ertürk (2014); Yi et al. (2013).

The aim of our work is to obtain numerical solution of VOIDEs using such common basis
polynomials. We study the following type of the VOIDEs:{

0D
η(t)
t Θ(t) = λ1

∫ t
0 N1(t, ξ) Θ(ξ) dξ + λ2

∫ 1
0 N2(t, ξ) Θ(ξ) dξ + γ(t),

Θ(0) = Θ0,
(1)
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where η(t) is bounded function in [0, 1] and N1(t, ξ), N2(t, ξ) and γ(t) are the known functions,

whereas Θ(t) is unknown. Here 0D
η(t)
t is variable order Caputo derivative which is defined

below Chen et al. (2015); Samko & Ross (1993); Shen et al. (2012); Xu & Suat Ertürk (2014);
Zhuang et al. (2009).

Definition 1. The variable order Caputo derivative for 0 < η(t) ≤ 1 is defined as:

0D
η(t)
t Θ(t) =

{
1

Γ(1−η(t))

∫ t
0 (t− s)−η(t)Θ′(s) dξ, 0 < η(t) < 1,

Θ′(t), η(t) = 1.
(2)

It is easy to report the following result, namely

0D
η(t)
t tm =


Γ(m+ 1)

Γ(m− η(t) + 1)
tm−η(t), m ∈ N,

0, m = 0.
(3)

2 The Method

2.1 Few basis polynomials

In this subsection, we briefly review the Taylor, Legendre and Chebyshev polynomials as basis
polynomials.

(i) The Taylor basis polynomials of degree n are defined by:

Bn(t) = tn, n = 1, 2, . . . . (4)

(ii) The shifted Legendre basis polynomials of degree n given by:

L0(t) = 1, L1(t) = 2t− 1,

Ln(t) =

n∑
k=0

(−1)n+k (n+ k)! tk

(n− k)! (k!)2
, n = 1, 2, . . . . (5)

(iii) The shifted Chebyshev polynomials C∗
n(t) are defined in terms of the Chebyshev polyno-

mials Cn(t) by the following relation:

C∗
n(t) = Cn(2t− 1), n = 1, 2, . . . , (6)

where C0(t) = 1, C1(t) = 2t and Cn(t) = 2t Cn−1(t)− Cn−2(t).

Let {P ∗
0 (t), P

∗
1 (t), ..., P

∗
n(t)} ⊂ H, where H = L2[0, 1] is a Hilbert space, be the set of one of the

above polynomials. Let Sn = Span{P ∗
0 (t), P

∗
1 (t), ..., P

∗
n(t)} and Θ ∈ H be an arbitrary element.

Sn is a complete subset of H because of Sn is a closed and finite dimensional subspace. So, Θ
has the unique approximation out of Sn such as Θ̃ ∈ Sn. Therefore, exist the unique coefficients
ai (i = 0, 1, ..., n) so that

Θ(t) ≈ Θ̃n(t) =
n∑

i=0

aiP
∗
i (t), (7)

where the function Θ̃n(t) in the above equation is an approximate solution for Eq. (1).
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2.2 Function approximation for Eq. (1)

Let Θ̃n(t) in (7) be approximation of Θ(t), then by substituting (7) in Eq. (1) we have:{
0D

η(t)
t Θ̃n(t) = λ1

∫ t
0 N1(t, ξ) Θ̃n(ξ) dξ + λ2

∫ 1
0 N2(t, ξ) Θ̃n(ξ) dξ + γ(t),

Θ̃n(0) = Θ0.
(8)

We define the residual function:

R(t, a0, a1, . . . , an) = 0D
η(t)
t Θ̃n(ξ)−

−λ1

∫ t

0
N1(t, ξ) Θ̃n(ξ) dξ − λ2

∫ 1

0
N2(t, ξ) Θ̃n(ξ) dξ − γ(t) = 0.

(9)

To find solution Θ(t), we use of the initial conditions in Eq. (8) and the roots of the shifted
second kind of Chebyshev polynomial as the collocation point for obtain unknown coefficients
a0, a1, ..., an. By substituting the collocation point in Eq. (9), we get the system of algebraic
equations. Consequently Θ(t) given in (7) can be calculated.

3 Test Examples

In this section we solve two examples which is solved by Operational Matrix Method in Yi et al.
(2013).

Example 1. Yi et al. (2013)0D
η(t)
t Θ(t) =

1

10

∫ t
0 tξ Θ(ξ) dξ +

1

3

∫ 1
0 (t+ ξ) Θ(ξ) dξ + γ(t),

Θ(0) = 0,

where 0 ≤ t ≤ 1, η(t) =
t

2
and

γ(t) =
Γ(7)t6−

t
2

Γ(7− t
2)

+
Γ(8)t7−

t
2

Γ(8− t
2)

− t9

80
− t10

90
− 5t

56
− 17

216
.

The exact solution is Θ(t) = t6 + t7. By applying the proposed method for this example, the
exact and approximation solutions are shown in figure 1. Also the absolute error are listed in
the table 1:
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Figure 1: The exact and approximation solutions (n = 7)

Example 2. Yi et al. (2013){
0D

η(t)
t Θ(t) =

∫ t
0 (t− ξ) Θ(ξ) dξ +

∫ 1
0 ξ sin t Θ(ξ) dξ + γ(t),

Θ(0) = 0,
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Table 1: Absolute errors from variable basis polynomials (n = 7).

t Error(Taylor) Error(Chebychev) Error(Legendre) Error(Yi et al. (2013))

0 0 6.93889e− 18 3.33067e− 16 0
0.1 2.31971e− 17 8.97059e− 17 8.12269e− 16 2.107654e− 006
0.2 7.74120e− 17 2.99538e− 16 3.33745e− 16 7.584658e− 007
0.3 2.13588e− 17 1.92663e− 16 6.74265e− 16 5.452959e− 006
0.4 1.04951e− 16 2.43729e− 16 8.59555e− 16 5.800553e− 006
0.5 6.93889e− 17 5.75928e− 16 3.36536e− 16 3.502632e− 006
0.6 2.77556e− 17 5.96745e− 16 3.05311e− 16 1.525140e− 004
0.7 5.55112e− 17 4.71845e− 16 2.77556e− 17 5.296317e− 004
0.8 1.66533e− 16 6.10623e− 15 1.38778e− 15 1.558219e− 003
0.9 0 1.33227e− 15 2.44249e− 15 4.035161e− 002

where 0 ≤ t ≤ 1, η(t) = t and

γ(t) =
Γ(234 )

Γ(234 − t)
t
19
4
−t +

Γ(365 )

Γ(365 − t)
t
31
5
−t − 16

621
t
27
4 − 25

1476
t
41
5 − 299

1107
sin(t).

By applying the proposed method for this example, we obtained numerical appropriate result.
The exact solution Θ(t) = t

19
4 + t

31
5 Yi et al. (2013), and approximation solution are ploted in

figure 2. The absolute errors are presented in table 2:
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Figure 2: The exact and approximation solutions (n = 7)

Table 2: Absolute errors from variable basis polynomials (n = 7).

t Error(Taylor) Error(Chebychev) Error(Legendre) Error(Yi et al. (2013))

0 0 1.11022e− 16 4.71845e− 16 0
0.1 4.39294e− 6 4.39294e− 7 4.39294e− 7 8.246755e− 004
0.2 2.69985e− 7 2.69985e− 6 2.69985e− 6 8.785142e− 006
0.3 5.5402e− 6 5.5402e− 7 5.5402e− 7 9.112653e− 005
0.4 4.11715e− 6 4.11715e− 6 4.11715e− 6 6.645263e− 005
0.5 3.40927e− 6 3.4092e− 6 3.4092e− 6 1.256150e− 003
0.6 2.27281e− 6 2.27281e− 6 2.27281e− 6 9.275812e− 003
0.7 4.77903e− 7 4.77903e− 7 4.77903e− 6 9.578623e− 003
0.8 1.72017e− 6 1.72017e− 6 1.72017e− 7 6.632365e− 003
0.9 2.71873e− 7 2.71873e− 7 2.71873e− 6 8.658236e− 002

4 Conclusion

In this paper, we obtain numerical solution for a type of Integro-differential equations which has
variable order derivative. Since the kernel of variable order derivative is very complex for having
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a variable exponent, it is not simply task to obtain the solution of such equations. Therefore
developing an effective numerical algorithms for solving such equations is importance. We used
few basis polynomials and the collocation method to obtain the approximate solution. The
scheme is easy and efficient. It could be applied for other type of integro-differential equations.
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